

PSI

2020

4 heures

Calculatrice autorisée

Robotisation du désherbage mécanique des vignes

Contexte

Le désherbage des vignes permet de préserver les ressources hydriques et azotées en éliminant les plantes qui entrent en concurrence avec la vigne. Il élimine également les herbes qui montent au cœur du feuillage favorisant le développement de maladies et contribue à l'aspect esthétique des vignes, vecteur d'image pour le vin.

La zone inter-rang est facile d'accès et l'entretien peut être fait par labour ou par tonte. Le désherbage mécanique « sous le rang » (figure 1) est délicat à réaliser, car il faut éviter de heurter les ceps avec l'outil qui travaille la terre.

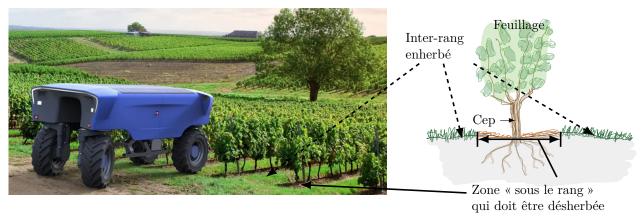


Figure 1 Robot Bakus (vue de gauche) sans outil dans une vigne avec inter-rang enherbé et espace sous le rang désherbé mécaniquement. Morphologie d'un plan de vigne (vue de droite) et vocabulaire associé.

S'il a l'avantage de décompacter le sol au voisinage des pieds de vigne, ce qui permet de favoriser la circulation de l'air et de l'eau vers le système racinaire des ceps, le désherbage mécanique doit être réalisé dans des conditions d'humidité du sol bien précises afin de garantir la qualité du travail. La conduite des tracteurs nécessite du personnel qualifié et un équipement suffisant pour pouvoir intervenir et traiter l'ensemble du vignoble au moment opportun.

Le désherbage chimique à base d'herbicides, plus facile à mettre œuvre et moins onéreux (tableau 1), s'est développé au cours des cinquante dernières années malgré les doutes émis sur les substances utilisées vis-à-vis des hommes et de l'environnement.

	$\begin{array}{l} {\rm D\acute{e}sherbage\ m\acute{e}canique} \\ {\rm \{tracteurs+chauffeurs\}} \end{array}$	Désherbage chimique	Désherbage mécanique robotisé
Coût annuel pour 10 ha de vignes larges (4000 pieds/ha)	300 €	130 €	à minimiser
Coût annuel pour 10 ha de vignes étroites (8000 pieds/ha)	800 €	180 €	à minimiser
Nombre de passages annuels	5	2	5
Émission de gaz à effet de serre équivalent CO_2 Tank To Wheel		40 kg/an/ha	à minimiser

Tableau 1 Comparatif des différentes solutions, source Institut Français de la Vigne et du Vin

La robotisation du désherbage mécanique doit devenir la solution utilisée par la majorité des viticulteurs :

- en proposant des véhicules capables de suivre le rang de manière autonome afin de s'affranchir des problèmes de disponibilité des chauffeurs et intervenir à tout moment, même la nuit ;
- en utilisant exclusivement de l'énergie électrique afin de minimiser les émissions de gaz à effet de serre équivalent CO_2 Tank To Wheel (du réservoir à la roue).

2020-03-02 16:20:51

L'objet de cette étude est le robot « Bakus » (figure 1) de la société VitiBot dont les premières utilisations ont eu lieu fin 2019 en Champagne. C'est un quadriporteur enjambeur de rang, dont chaque roue est motrice et orientable. L'énergie utilisée est exclusivement électrique, Bakus est équipé de batteries et de panneaux solaires.

Dans ce sujet, seul le cas du désherbage mécanique avec lame décavaillonneuse est étudié car il est le plus exigeant vis-à-vis des performances attendues du robot. Le décavaillonnage consiste à retourner la terre dans la zone « sous le rang ». Il demande un guidage précis des outils dans le rang de vigne et occasionne une dépense énergétique accrue pour vaincre l'effort du sol sur les lames et assurer le mouvement de retrait de ces dernières à l'approche d'un cep afin d'éviter de l'abimer.

Les ceps de vigne sont plantés à des intervalles interceps réguliers de longueur l_{ic} , tels que 1 m $\leqslant l_{ic} \leqslant$ 1,2 m, pour former le rang.

Le cahier des charges partiel du désherbage mécanique des vignes est donné figure 3.

Figure 2 Lames décavaillonneuses interceps équipant un enjambeur

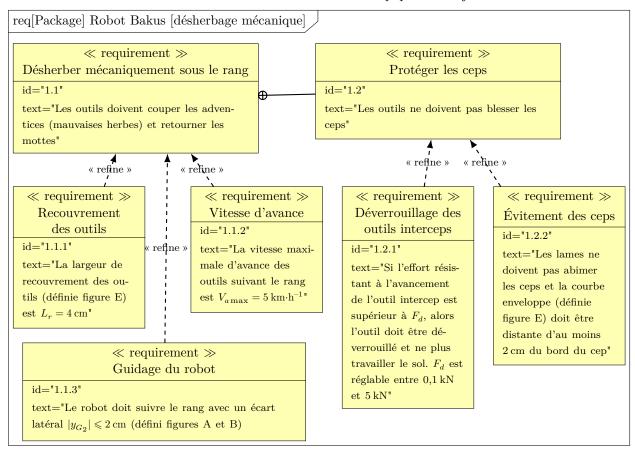


Figure 3 Cahier des charges partiel

L'objet de ce sujet est d'évaluer les solutions retenues pour suivre le rang de manière autonome et assurer le retrait des lames décavaillonneuses à l'aide d'un actionneur électrique tout en optimisant la consommation énergétique et en respectant les exigences du désherbage mécanique.

Le sujet est décomposé en deux parties :

- en partie I, il s'agit d'élaborer la consigne de guidage du robot Bakus le long du rang à partir des informations issues des capteurs utilisés et de vérifier les performances du guidage vis-à-vis du désherbage mécanique dans le cas de sols glissants en dévers ;
- en partie II, une étude du mécanisme de retrait d'une lame décavaillonneuse permettra d'estimer la puissance économisée lors de l'évitement d'un cep, puis une étude dynamique permettra de choisir un actionneur électrique et de concevoir une stratégie de commande de ce dernier.

I Génération des consignes d'orientation des roues avant et arrière pour le guidage du robot Bakus

 Ob:	iectif

Élaborer les lois permettant de générer les consignes d'orientation à envoyer à chacune des quatre roues orientables du robot, afin qu'il puisse se déplacer le long d'un rang de vigne avec la même précision qu'un tracteur piloté par un chauffeur.

Pour que le robot puisse se déplacer correctement le long du rang qu'il enjambe, il faut qu'il puisse suivre la trajectoire \mathcal{T} le plus précisément possible (figure B du document réponse).

Afin de simplifier l'étude proposée, il sera supposé dans toute cette partie que la trajectoire \mathcal{T} à suivre par le robot, correspondant à la courbe passant par l'ensemble des ceps de vigne d'un rang, est une droite (O, \vec{x}_0) (figure A du document réponse). En effet, les rangs de vignes sont globalement plantés en ligne droite (ou avec des rayons de courbure très grands devant la distance entre deux ceps successifs) et avec une erreur de positionnement de quelques millimètres, très inférieure aux dimensions du robot.

Les différents outils que le robot embarque travaillant au milieu du robot (point G_2), ce dernier doit piloter les angles d'orientation de ses roues avant et arrière, afin de maitriser l'écart latéral y_{G_2} et l'écart angulaire θ (compensation de la marche en crabe sur les terrains en pente glissants : voir figures A et B du document réponse).

I.A - Changement de variables $(y_{G_2}, \theta) \rightarrow (y_F, y_R)$

— Objectif -

Simplifier l'approche du problème d'asservissement du couple de variables (y_{G_2},θ) au point de fonctionnement (0,0) à l'aide d'un changement de variables approprié.

L'écart angulaire θ (figures A et B du document réponse) n'est en réalité que de quelques degrés ($|\theta| \leq 7^{\circ}$). Ainsi, à l'ordre 1, il est possible d'utiliser dans la suite les approximations suivantes :

 $\cos \theta \approx 1$, $\sin \theta \approx \theta$ et $\tan \theta \approx \theta$.

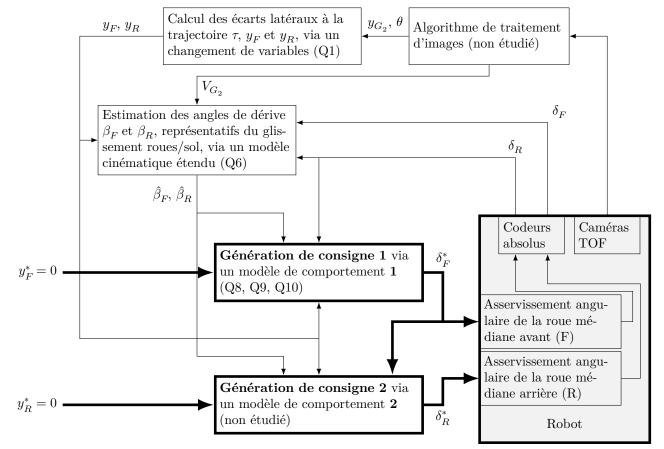
Q 1. À partir de la figure A uniquement :

- déterminer les expressions linéarisées à l'ordre 1 de y_F et y_R , notées respectivement (E1) et (E2) en fonction de y_{G_2} , θ et L puis en déduire l'expression de θ en fonction de y_F , y_R et L, notée (E3);
- déduire de ces résultats que chercher à asservir le couple de variables (y_{G_2}, θ) au point de fonctionnement (0,0) est équivalent à asservir (y_F, y_R) au même point de fonctionnement.

Par conséquent, une réponse à la problématique de l'asservissement latéral du robot Bakus à la trajectoire $\mathcal T$ consiste maintenant à asservir les écarts latéraux (y_F,y_R) pour qu'ils convergent vers le point de fonctionnement $(y_F^*,y_R^*)=(0,0)$, où y_F^* et y_R^* représentent les variables de consigne de position latérale des points F et R par rapport à $\mathcal T$, et ce, malgré un glissement potentiel des roues sur un sol naturel.

Ainsi, le schéma de génération des consignes d'orientation des roues retenu par le constructeur peut se mettre sous la forme de la figure 4.

I.B - Modélisation cinématique étendue du robot


 \mathbf{O}	hi	ect	tif
$\mathbf{\circ}$	~յ	CC	UII

Établir un modèle exploitable décrivant les déplacements du robot Bakus sur un sol naturel, c'est-à-dire en tenant compte d'un éventuel glissement des roues sur le sol lorsqu'il est en dévers (phénomène de dérive latérale et angulaire).

Pour pouvoir élaborer les consignes d'orientation des roues du robot, il est nécessaire d'établir un modèle reflétant avec précision le comportement réel du système. Un modèle dynamique complet serait idéal, mais sa complexité rendrait difficile toute étude de loi de commande, notamment à cause de nombreux paramètres difficiles à estimer.

À contrario, un modèle cinématique sous hypothèse de roulement pur sans glissement au niveau du contact roue-sol serait plus facile à gérer d'un point de vue de l'élaboration de la commande qu'un modèle dynamique complet, mais il ne décrirait pas suffisamment bien le comportement du système réel qui peut rencontrer des problèmes d'adhérence sur un sol naturel en dévers.

Figure 4 Schéma de principe de la génération des consignes d'orientation des roues du robot Bakus δ_F^* et δ_R^* pour le suivi de la trajectoire \mathcal{T} , avec prise en compte du glissement au niveau des roues sur le sol (Qi fait référence au(x) résultat(s) de la question i), y_F^* et y_R^* correspondent aux écarts latéraux souhaités entre le robot et la trajectoire τ (figure A).

Une approche intermédiaire consiste alors à enrichir le modèle cinématique du robot Bakus avec un nombre limité de variables dynamiques. C'est cette approche qui est retenue par la suite, en ajoutant des variables de glissement sur chacun de ses trains directeurs et roulants. Ce modèle, dit modèle cinématique étendu, est représenté sur la figure A.

I.B.1) Notations et hypothèses

Les notations suivantes sont relatives à la figure A.

- le sol est modélisé par le solide 0 auquel est associé le repère $(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ et est supposé être localement plan à l'aplomb du point G_2 ;
- le problème est considéré comme cinématiquement plan dans $(O, \vec{x}_0, \vec{y}_0)$;
- le châssis du robot Bakus correspond au solide 2, associé au repère $(G_2, \vec{x}_2, \vec{y}_2, \vec{z}_2)$;
- afin de simplifier l'étude, les deux roues avant sont assimilées à une seule roue virtuelle (repère 5) située en F, de même le train arrière est assimilé à une roue virtuelle (repère 6) située en R (figure A);
- les angles $\delta_F = (\vec{x}_2, \vec{x}_F)$ et $\delta_R = (\vec{x}_2, \vec{x}_R)$ sont respectivement les angles d'orientation autour de \vec{z}_2 de la roue virtuelle avant en F et de la roue virtuelle arrière en R. Ces deux angles constituent les deux premières variables de commande du robot. V_{G_2} est la mesure algébrique de la vitesse linéaire du robot au point G_2 et correspond à la troisième variable de commande ;
- les angles $\beta_F = (\vec{x}_{V_F}, \vec{x}_F)$ et $\beta_R = (\vec{x}_{V_R}, \vec{x}_R)$ sont respectivement les angles de dérive des roues virtuelles avant et arrière. Ces angles traduisent la conséquence d'un glissement éventuel des roues virtuelles avant et arrière par rapport au sol ;
- l'angle θ est défini par $\theta=(\vec{x}_0,\vec{x}_2)$. Il paramètre l'orientation du châssis 2 du robot par rapport à la trajectoire \mathcal{T} ;
- la dérivée temporelle d'une variable s sera notée $\dot{s} = \frac{\mathrm{d}s}{\mathrm{d}t}$;
- quel que soit le point $P \in \{F, G_2, R\}$:
 - $\bullet \quad \overrightarrow{OP} = x_P \vec{x}_0 + y_P \vec{y}_0 \; ;$
 - $\vec{V}_{P,2/0} = \vec{V}_P$ correspond au vecteur vitesse réel, c'est-à-dire malgré le glissement des roues sur le sol, du point P pris dans le mouvement du châssis 2 du robot par rapport au sol. Ainsi, il vient $\dot{x}_P = \vec{V}_P \cdot \vec{x}_0$ et $\dot{y}_P = \vec{V}_P \cdot \vec{y}_0$;

(CC) BY-NC-SA

- les angles γ_P sont définis par $\gamma_P = (\vec{x}_2, \vec{x}_{V_P})$;
- P_0 correspond au projeté orthogonal d'un point P lié au robot sur \mathcal{T} ;
- I_{20} correspond à un point virtuel tel que $\vec{V}_{I_{20},2/0} = \vec{0}$. Il est alors possible de montrer que $\vec{V}_P \cdot \overrightarrow{I_{20}P} = 0$.
- la vitesse linéaire d'avance du robot le long de la trajectoire $\mathcal T$ correspond à $\dot x_{G_2}$.

Les valeurs des variables θ (en radian) et y_{G_2} (en mètre) sont déterminées par le robot grâce à un algorithme de traitement d'images de huit caméras TOF (Time Of Flight) installées sur la périphérie du robot.

I.B.2) Mise en équation du modèle cinématique étendu du robot Bakus

Q 2. À partir de la figure A, déterminer les relations donnant les expressions de :

- \dot{y}_F et \dot{y}_R en fonction de V_F , V_R , θ , δ_F , δ_R , β_F et β_R ;
- \dot{x}_{G_2} en fonction de $V_{G_2},\,\gamma_{G_2}$ et $\theta.$

Q 3. Montrer rigoureusement que $\vec{V}_{G_2} \cdot \vec{x}_2 = \vec{V}_F \cdot \vec{x}_2 = \vec{V}_R \cdot \vec{x}_2$. En déduire une relation entre V_{G_2} , γ_{G_2} , V_F , V_F , V_R et γ_R .

À l'aide de la figure A et en considérant successivement les triangles FHI_{20} , RHI_{20} et G_2HI_{20} , il est possible d'écrire que :

$$\begin{cases} \tan \gamma_F = \frac{2L+h}{\rho} \\ \tan \gamma_R = \frac{h}{\rho} \\ \tan \gamma_{G_2} = \frac{h+L}{\rho} = \frac{\tan \gamma_F + \tan \gamma_R}{2} \end{cases}$$

Q 4. À partir du résultat obtenu à la question 3, donner les expressions de V_F et V_R en fonction de V_{G_2} , δ_F , δ_R et β_R .

Les valeurs des angles θ , β_F et β_R n'étant en pratique que de quelques degrés ($|\theta| < 7^{\circ}$ et $|\beta_F|, |\beta_R| \leqslant 3^{\circ}$), les angles δ_F et δ_R le sont aussi, ainsi que $(\delta_F - \beta_F)$ et $(\delta_R - \beta_R)$.

Ainsi, en linéarisant à l'ordre 1 les trois équations obtenues et en combinant les résultats des questions 2 et 4 pour de petits angles, la cinématique du robot en train de longer un rang de vigne peut être décrite par les trois équations suivantes :

$$\dot{x}_{G_2} = V_{G_2} \tag{I.1}$$

$$\dot{y}_F = V_{G_2}(\theta + \delta_F - \beta_F) \tag{I.2}$$

$$\dot{y}_R = V_{G_2}(\theta + \delta_R - \beta_R) \tag{I.3}$$

Ce système de trois équations correspond au modèle cinématique étendu du robot enjambeur, qui prend bien en compte les effets d'une mauvaise adhérence potentielle des roues sur le sol naturel.

I.C - Mesure ou estimation des variables du modèle cinématique étendu

— Objectif

Donner les moyens au robot de mesurer ou, à défaut, d'estimer les valeurs des variables δ_F , δ_R , y_{G_2} , θ , \dot{y}_F , \dot{y}_R et V_{G_2} du modèle cinématique étendu.

I.C.1) Variables mesurées directement par des capteurs dédiés

a) Mesure de l'orientation des roues

L'orientation des roues, paramétrée par les variables δ_F et δ_R , est effectuée par des motoréducteurs asservis en position. La mesure de δ_F et δ_R est effectuée par l'intermédiaire de codeurs angulaires absolus situés en sortie de réducteur. Ainsi, les valeurs des variables δ_F et δ_R sont directement fournies par ces capteurs.

Q 5. Compte-tenu du contexte d'utilisation du robot, justifier l'intérêt d'avoir choisi des codeurs absolus plutôt que relatifs (incrémentaux) pour obtenir les valeurs mesurées de δ_F et δ_R .

b) Mesure des variables cinématiques

L'analyse des images successives prises par les caméras TOF permet au robot de déterminer les valeurs des variables y_{G_2} , θ et V_{G_2} . Ce traitement n'est pas étudié dans ce sujet.

L'évaluation des variables

- y_F et y_R se fait à l'aide des valeurs de y_{G_2} , θ et des relations de changement de variables trouvées à la question 1;
- $-\dot{y}_F$, \dot{y}_R se fait à partir de la dérivation temporelle des variables y_F et y_R .

I.C.2) Variables estimées par analyse d'images des huit caméras TOF du robot

Le problème majeur pour la commande du robot Bakus est qu'il est très difficile de mesurer les valeurs des variables de glissement β_F et β_R à l'aide de capteurs dédiés. L'idée consiste à estimer ces variables de glissement, notées alors $\hat{\beta}_F$ et $\hat{\beta}_R$, à partir des autres grandeurs mesurées par le système.

Q 6. À partir des équations (I.2) et (I.3), donner l'expression des variables estimées $\hat{\beta}_F$ et $\hat{\beta}_R$ en fonction des variables mesurées \dot{y}_F , \dot{y}_R , V_{G_2} , θ , δ_F et δ_R .

Grâce au modèle cinématique étendu établi précédemment, les variables de glissement estimées $\hat{\beta}_F$ et $\hat{\beta}_R$ peuvent donc être déterminées par le robot, à partir des mesures fournies par les codeurs absolus des dispositifs d'orientation des roues et l'analyse des images acquises par les huit caméras TOF.

I.D - Génération des consignes d'orientation des roues (δ_F^*, δ_R^*) pour l'asservissement latéral et angulaire du robot enjambeur le long d'un rang de vigne

— Objectif

Établir les lois de génération de consigne de l'asservissement latéral du robot Bakus pour qu'il puisse suivre avec précision la trajectoire \mathcal{T} , malgré un glissement éventuel des roues sur le sol naturel.

L'idée consiste à établir deux lois de génération de consigne distinctes en cascade (figure 4) :

- une génération de consigne 1 qui correspond à celle de l'orientation des roues avant du robot, afin de faire converger y_F vers 0 en pilotant l'angle δ_F . L'angle δ_R est alors supposé être connu, car mesuré par l'intermédiaire des codeurs absolus situés sur les dispositifs d'orientation des roues arrière du robot;
- une génération de consigne 2 qui correspond à celle de l'orientation des roues arrière du robot, afin de faire converger y_R vers 0 en pilotant l'angle δ_R .
- I.D.1) Passage du domaine temporel au domaine spatial : $t \to x_{G_2}$

— Objectif

Rendre le modèle cinématique étendu indépendant de la vitesse linéaire V_{G_2} du robot le long d'un rang de vigne, afin de découpler la gestion des écarts latéraux y_F et y_R et celui de la vitesse d'avance V_{G_3} .

Pour ce faire, un changement de domaine doit être effectué pour passer du domaine temporel au domaine spatial. Les notations suivantes sont utilisées :

- il est rappelé que la dérivée par rapport au temps (en seconde) d'une variable s est notée $\dot{s} = \frac{\mathrm{d}s}{\mathrm{d}t}$;
- la dérivée par rapport à l'abscisse x_{G_2} (en mètre) d'une variable s est notée $s' = \frac{\mathrm{d}s}{\mathrm{d}x_{G_2}}$.

Q 7. À partir des équations (E3), (I.1), (I.2) et (I.3) établies à partir du modèle cinématique étendu de la figure A, montrer que :

$$y_F' = \theta + \delta_F - \beta_F \tag{I.4}$$

$$y_R' = \theta + \delta_R - \beta_R \tag{I.5}$$

$$\theta' = \frac{y_F' - y_R'}{2L} \tag{I.6}$$

Ces trois relations sont bien indépendantes de la vitesse linéaire V_{G_2} du robot le long du rang.

I.D.2) Asservissement de la variable de déplacement latéral y_F à une consigne $y_F^* = 0$

— Objectif

Justifier le choix du modèle du comportement en déplacement latéral y_F du robot assurant sa convergence à une valeur de consigne y_F^* et son réglage.

Il est rappelé que dans ce cas, l'angle d'orientation de la roue médiane arrière 6, noté δ_R , est supposé être connu, car il peut être mesuré directement : il sera donc noté δ_R dans le cadre de l'asservissement de y_F à 0.

Le $modèle\ 1$ du comportement en déplacement latéral y_F , choisi par le constructeur, est régi par l'équation

$$y_F'' + K_{dF} y_F' + K_{vF} y_F = K_{vF} y_F^*. (I.7)$$

Q 8. Par analogie avec un modèle temporel usuel d'ordre 2 à identifier, de paramètres caractéristiques ω_{0F} , ξ_F et K_F :

- en justifiant la réponse, tracer l'allure de l'évolution de $y_F(x_{G_2})$ imposée par le modèle 1 (I.7) pour une consigne $y_F^*=0$ en fonction de x_{G_2} , lorsque $y_F(x_{G_2}=0)=y_{F0}>0$ (y_{F0} étant une valeur constante), $y_F'(x_{G_2}=0)=0,\ K_{pF}=\frac{K_{dF}^2}{4} \ {\rm et}\ K_{dF}\approx 5 \ ;$
- préciser sur le graphe les éléments caractéristiques de la courbe tracée pour $x_{G_2}=0$;
- justifier pourquoi le paramètre K_{pF} a été réglé de telle sorte que $K_{pF} = \frac{K_{dF}^2}{4}$, compte-tenu du contexte de fonctionnement du robot enjambeur.

Prendre en compte la condition initiale non nulle $y_F(x_{G_2}=0)=y_{F0}\neq 0$ et une consigne y_F^* nulle, revient à considérer que les performances du $mod\`ele$ 1 sont les mêmes que celles du modèle suivant, pour lequel $y_F'(x_{G_2}=0)=0$:

$$y_E'' + K_{dF} y_E' + K_{pF} y_F = K_{pF} y_{F0}$$
 (I.8)

Il est rappelé que les ceps de vigne d'un même rang sont plantés tous les 1 à 1,2 m sur une même ligne dont les variations du rayon de courbure sont faibles vis-à-vis de la longueur du rang.

Q 9. Expliquer ce que représente $x_{F_{r5\%}}$ dans le cas de ce modèle spatial (I.8), analogue du temps de réponse à 5 % dans le cas d'un modèle temporel. Préciser son unité. Compte-tenu de la valeur prise précédemment pour le réglage de K_{pF} , donner alors une expression littérale approchée de $x_{F_{r5\%}}$ en fonction de K_{dF} . Effectuer l'application numérique et conclure sur la pertinence de la valeur numérique de K_{dF} , vu le contexte d'utilisation du robot enjambeur.

I.D.3) Génération des consignes d'orientation δ_F^* et δ_R^* des roues médianes

— Objectif

Établir deux relations permettant de déterminer la consigne d'orientation de la roue médiane avant δ_F^* et celle de la roue médiane arrière δ_R^* (figure A).

L'idée générale consiste à exploiter les relations établies précédemment en tenant compte du fait que certaines variables peuvent maintenant être mesurées ou estimées par le robot (voir le schéma de génération des consignes d'orientation des roues sur la figure 4).

Afin de simplifier la relation qui permet de déterminer la consigne d'orientation de la roue médiane avant 5, notée δ_F^* , il est supposé que $\delta_F' - \beta_F' \approx 0$. En effet, la courbure de la trajectoire \mathcal{T} à suivre est très faible et, en pratique, les variations des conditions d'adhérence du robot au sol varient lentement le long d'un rang de vigne.

Q 10. À partir des relations issues du modèle cinématique étendu du robot (figure A), de la relation issue du modèle 1 choisi pour le comportement de $y_F(x_{G_2})$, et en sachant que les relations (E1) et (E2) trouvées à la question 1 permettent de considérer que les valeurs des variables y_F et y_R sont connues si y_{G_2} et θ le sont aussi (trajectoire $\mathcal T$ connue):

- a. déterminer l'expression de y_F'' , en fonction de δ_F , β_F , δ_R , β_R et L. Pour ce faire, commencer par exprimer y_F'' à partir de la relation (I.4), en tenant compte de l'hypothèse relative aux valeurs de $\delta_F' \beta_F'$;
- b. en tenant compte du point de fonctionnement souhaité, déterminer ensuite l'expression de δ_F de la roue médiane avant 5, en utilisant la relation (I.7), puis les relations (I.4) et (E3);
- c. en identifiant précisément les variables qui sont mesurées et estimées, et en supposant que les dispositifs d'orientation des roues fonctionnent parfaitement et assurent ainsi que $\delta_F^* = \delta_F$, montrer alors que l'expression de δ_F^* est de la forme $\delta_F^* = C_1 \hat{\beta}_F + C_2 (\delta_R \hat{\beta}_R) + C_3 y_F + C_4 y_R$;
- d. donner les expressions littérales de $C_1,\,C_2,\,C_3$ et C_4 en fonction de $K_{dF},\,K_{pF}$ et L.

Cette expression de δ_F^* est implantée dans un des calculateurs du robot afin de pouvoir générer les angles respectifs de consigne envoyés aux dispositifs d'orientation des deux roues avant du robot afin que l'écart latéral y_F reste proche de 0, quelles que soient les conditions d'adhérence des roues sur le sol.

En utilisant un raisonnement analogue à celui utilisé pour déterminer la consigne d'orientation des roues avant δ_F^* et en se limitant à un modèle d'ordre 1 pour son comportement, il est possible de déterminer la relation suivante, permettant de générer la consigne d'orientation δ_R^* de la roue médiane arrière 6 :

$$\delta_R^* = \hat{\beta}_R - \frac{1 - 4L^2 K_{pF}}{2L} \, y_F - 2K_{dR} (1 + 2K_{dF}) \, y_R$$

avec $K_{dR} \approx 1$, un réglage pertinent.

Ainsi, quelles que soient les conditions d'adhérence des roues sur le sol, le robot est capable de suivre correctement le rang de vigne qu'il enjambe.

II Optimisation énergétique du mouvement de retrait d'une lame décavaillonneuse, choix d'un actionneur et conception de sa commande

Le robot Bakus étant capable de suivre le rang de manière autonome, il est nécessaire d'étudier le mécanisme qui permet à la lame décavaillonneuse d'éviter les ceps. Ce mouvement de retrait devant le cep consomme de l'énergie, mais il est possible de diminuer l'effort résistant à l'avancement du robot lors du retrait en utilisant un système de transformation de mouvement particulier. De plus, il est nécessaire de choisir un actionneur électrique permettant de fournir une dynamique adaptée à l'évitement des ceps, quelles que soient les conditions d'utilisation.

— Objectif -

Adapter un outil intercep non motorisé utilisé avec les tracteurs traditionnels afin de concevoir un outil avec motorisation électrique pour le robot Bakus.

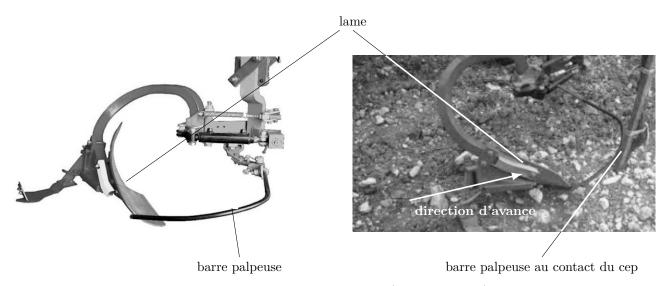


Figure 5 Vues d'un outil intercep non motorisé en travail (photo de droite), lame et barre palpeuse

Au contact du cep, une barre palpeuse (figure 5) est mise en rotation par rapport au robot. La mise en rotation est d'autant plus rapide que le robot avance vite ou que le cep est proche de l'axe de rotation de la barre palpeuse. Les outils non motorisés utilisent l'action du cep sur la barre palpeuse pour réaliser le mouvement de retrait, ce qui peut abimer le cep. Les outils motorisés utilisent la barre palpeuse comme un capteur qui permet d'élaborer la commande de l'actionneur qui génère le mouvement de retrait.

II.A – Modélisation du mouvement des lames, tracé numérique des relations entre paramètres géométriques d'entrée et de sortie puis estimation de la puissance épargnée

Diminuer la largeur de terre travaillée (notée Lt sur la figure E du document réponse) permet de diminuer l'effort résistant à l'avancement du sol sur la lame, et donc de réduire la puissance nécessaire à faire avancer le robot le long du rang. Ce gain de puissance peut alors être affecté au mécanisme de retrait dont la puissance initialement allouée est limitée à $20 \, \mathrm{kW}$.

— Objectif -

Choisir un mécanisme de transformation du mouvement qui permette de diminuer d'au moins 15 % la puissance de cette action mécanique lorsque l'outil est en position moyenne de retrait par rapport à la position déployée : Δ % $P_{\text{sol}\to 4/0} > 15$ %.

La majorité des outils interceps utilise un mécanisme qui permet de faire reculer la lame, partie de l'outil qui travaille le sol (figure 5), perpendiculairement à la direction d'avance du tracteur afin de ne pas endommager le cep.

L'effort du sol sur la lame décavaillonneuse numérotée (4) sur la figure E évolue en fonction des spécificités du sol travaillé (irrégularité du sol, nature du sol plus ou moins argileuse, présence d'adventices plus ou moins développés). Toutefois la géométrie de la lame décavaillonneuse est telle que l'action du sol sur la lame peut être modélisée par un glisseur au point B dirigé suivant $\vec{u}_4: \vec{F}_{\mathrm{sol} \to \mathrm{lame}} = -F_{\mathrm{sol}} \vec{u}_4$. L'effort résistant à l'avancement de l'outil intercep est noté $F_r = \vec{F}_{\mathrm{sol} \to \mathrm{lame}} \cdot \vec{x}_2$.

Le mécanisme étudié est similaire à celui proposé par la société Égretier qui équipe les tracteurs classiques. Il s'agit d'un système « 4 barres » qui permet d'obtenir un mouvement de retrait de la lame, mais aussi un

mouvement de rotation de cette dernière. La rotation permet de diminuer la largeur de bande travaillée Lt et donc de réduire l'effort résistant à l'avancement résultant de l'action du sol sur la lame, F_r . La rotation permet aussi de ne pas travailler l'inter-rang, ce qui serait inutile.

Dans le plan, il est possible de modéliser le mécanisme de l'outil intercep comme un ensemble de 4 solides rigides liés par des liaisons pivot d'axes de direction \vec{z}_0 (figure E).

Les bases associées à chaque solide i de ce problème plan de normale \vec{z}_0 sont notées : $B_i = (\vec{x}_i, \vec{y}_i, \vec{z}_0)$.

Les rotations entre deux solides i et j sont paramétrées par un angle θ_{ji} défini comme sur la figure ci-contre. Les liaisons entre solides sont modélisées par :

- une liaison pivot d'axe (O_1, \vec{z}_0) entre 2 et 1;
- une liaison pivot d'axe (O_3, \vec{z}_0) entre 2 et 3;
- une liaison pivot d'axe (A, \vec{z}_0) entre 1 et 4 ;
- une liaison pivot d'axe (B, \vec{z}_0) entre 3 et 4.

Sont numérotés sur la figure E :

- 0, le référentiel galiléen lié à la vigne, \vec{x}_0 est la direction du rang et correspond à la direction d'avance du robot Bakus dont la vitesse est supposée être constante dans cette partie;
- 1, la barre qui est déplacée pour le mouvement de retrait ;
- 2, le bâti du robot Bakus auquel l'outil est lié complètement, les bases B_0 et B_2 sont confondues dans cette partie ;
- 3, la barre opposée;
- 4, la lame décavaillonneuse.

La base $B_4^*=(\vec{u}_4,\vec{v}_4,\vec{z}_0)$ est aussi associée au solide 4 et l'angle entre \vec{x}_4 et \vec{u}_4 est noté $\alpha_4=(\vec{x}_4,\vec{u}_4)=0.65\,\mathrm{rad}$.

Les vecteurs suivants sont donnés : $\overrightarrow{O_1A} = -l_1\overrightarrow{x_1}$, $\overrightarrow{AB} = -l_4\overrightarrow{y_4}$, $\overrightarrow{BO_3} = l_3\overrightarrow{x_3}$, $\overrightarrow{O_3O_1} = -a\overrightarrow{x_2} + b\overrightarrow{y_2}$.

Le mouvement de l'intercep permet de passer de la position déployée ($\theta_{10}=0.87\,\mathrm{rad}$) à la position de retrait qui fluctue en fonction de la morphologie de la vigne :

- la position de retrait maximale est obtenue pour un angle $\theta_{10}=0.1$ rad (recul du point D de la lame de 18 cm suivant \vec{y}_0 , voir figure E);
- la position de retrait moyenne au cours du désherbage d'un rang correspond à une valeur d'angle voisine de 0.3 rad pour θ_{10} .
- **Q 11.** Écrire sous forme vectorielle la relation de fermeture de la chaine géométrique liée au modèle de la figure E et donner les équations scalaires associées en projection sur les vecteurs de la base B_2 .
- **Q 12.** En exprimant les fonctions f_1 , f_2 et f_3 en fonction des paramètres l_1 , l_3 , l_4 , a, b, $\cos(\theta_{10})$ et $\sin(\theta_{10})$, montrer qu'il est possible d'obtenir à partir des équations de la question précédente une seule équation de la forme :

$$f_1(\theta_{10}) - f_2(\theta_{10})\sin(\theta_{40}) - f_3(\theta_{10})\cos(\theta_{40}) = 0.$$
(II.1)

Afin de tracer la loi entrée-sortie du mécanisme, c'est-à-dire $\theta_{40}=f(\theta_{10})$, il est nécessaire d'utiliser une résolution numérique. Connaissant θ_{10} , il est possible de déterminer θ_{40} à l'aide de la relation (II.1) établie à la question précédente : il suffit de résoudre l'équation $\lambda_1 \cos(\theta_{40}) + \lambda_2 \sin(\theta_{40}) = \lambda_3$ où λ_1 , λ_2 et λ_3 sont trois valeurs dépendantes de θ_{10} .

Le programme Python utilisé et la courbe obtenue sont donnés sur la figure 6. Une liste de fonctions Python utiles est fournie en fin d'énoncé.

Il est rappelé que l'angle $\alpha_4=(\vec{x}_4,\vec{u}_4)$ est voisin de 0,65 rad.

Q 13. En faisant l'hypothèse que quelle que soit la position de la lame $\vec{V}_{B,4/0} \sim V_{a\,\mathrm{max}}\vec{x}_0$, exprimer sous forme littérale la puissance de l'action mécanique du sol sur l'outil dans son mouvement par rapport au sol 0 notée $P_{\mathrm{sol}\to4/0}$ en fonction de $F_{\mathrm{sol}},\,V_{a\,\mathrm{max}},\,\alpha_4$ et θ_{40} . Calculer alors la variation relative de cette puissance en pour cent notée $\Delta\,\%\,P_{\mathrm{sol}\to4/0}$ entre la position moyenne de retrait $(\theta_{10}\,\sim\,0.3\,\mathrm{rad})$ et la position déployée de l'intercep et conclure vis-à-vis de l'objectif de cette partie $(\Delta\,\%\,P_{\mathrm{sol}\to4/0}>15\,\%)$.

2020-03-02 16:20:51 Page 9/15

```
import numpy as np
                                            0,4
import matplotlib.pyplot as plt
                                            0,3
                                        \theta_{40} (rad)
                                                          Zone utilisée
# Paramètres géométriques (mm)
                                            0,2
11 = 240
14 = 129
                                            0,1
                                                                                        intercep
13 = 315
                                                                                        déployé
                                              0
a = 105
b = 135
                                              0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
                                                                                  1
                                                                                     1,1 1,2 1,3
                                                                    \theta_{10} (rad)
# Valeurs dans [6°, 75°[ par pas de 1,4°
theta10 = np.radians(np.arange(6, 75, 1.4))
# Calcul de theta40 = f(theta10)
lambda1 = # issu de f1 de la question 12
lambda2 = # issu de f2 de la question 12
lambda3 = # issu de f3 de la question 12
theta40 = np.arccos(
       (lambda1*lambda3 + lambda2*np.sqrt(lambda1**2 + lambda2**2 - lambda3**2))
       / (lambda1**2 + lambda2**2)
   )
# Tracé de la loi entree sortie
plt.figure()
plt.plot(theta10, theta40)
plt.ylabel("$\\theta_{40}$ (rad)")
plt.xlabel("$\\theta_{10}$ (rad)")
plt.axis("equal")
plt.grid()
```

Figure 6 Résolution en Python et tracé de la loi entrée-sortie du mécanisme intercep

II.B – Modélisation cinétique du mécanisme intercep, quantification de la dépense énergétique liée au retrait compte tenu des exigences du désherbage mécanique

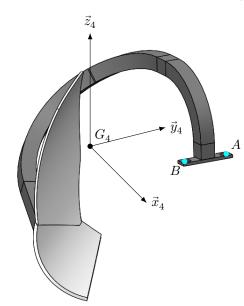
—— Objectif

Ajouter, dimensionner et commander un actionneur électrique permettant d'assurer le mouvement de retrait puis le déploiement de la lame.

La barre palpeuse est utilisée comme capteur à contact (raison de sécurité), l'effort exercé sur le cep par cette dernière est sans importance. Il est nécessaire de dimensionner l'actionneur afin que la dynamique des mouvements de retrait et de déploiement satisfasse les exigences du désherbage mécanique. Le paramétrage utilisé est identique à celui de la figure E.

II.B.1) Expression de l'énergie cinétique du mécanisme intercep

 $-\!\!-\!\!-$ Objectif -


Exprimer l'énergie cinétique du mécanisme intercep dans un référentiel galiléen en fonction du seul paramètre cinématique $\dot{\theta}_{40}$.

Hypothèses et notations

- le problème est plan $(0_1, \vec{x}_0, \vec{y}_0)$ et l'action mécanique de pesanteur est normale à ce plan ;
- le robot Bakus est en translation uniforme suivant $\vec{x}_0 = \vec{x}_2$, $B_2 = B_0$ donc, dans cette partie tout référentiel associé au solide 2 est galiléen;
- $\vec{V}_{O_1,2/0} = V_a \vec{x}_0$ avec V_a constante et voisine de 1,4 m·s⁻¹;
- l'effort du sol sur la lame est modélisé par un glisseur au point B dirigé suivant \vec{u}_4 : $\vec{F}_{\rm sol \to lame} = -F_{\rm sol} \vec{u}_4$;
- les masses et inerties des solides 1, 3, 5 et 6 (figure 8) sont négligées vis-à-vis de la masse et de l'inertie de la lame 4 ;
- les dérivées des fonctions temporelles sont notées : $\frac{\mathrm{d}f}{\mathrm{d}t} = \dot{f}$ et $\frac{\mathrm{d}^2f}{\mathrm{d}t^2} = \ddot{f}$;

- pour rappel, $\overrightarrow{O_1A}=-l_1\vec{x}_1$, avec $l_1=0.24\,\mathrm{m}$ et $\overrightarrow{AB}=-l_4\vec{y}_4$, avec $l_4=0.129\,\mathrm{m}$;
- toutes les liaisons sont considérées comme parfaites, notamment d'un point de vue énergétique.

Centre d'inertie de la lame 4 :

$$| \overrightarrow{AG_4} = x_{G4} \vec{x}_4 + y_{G4} \vec{y}_4 + z_{G4} \vec{z}_4, \\ \text{avec } x_{G4} = -0.3 \text{ m}, \ y_{G4} = -0.1 \text{ m et } z_{G4} = 0 \text{ m}.$$

Opérateur d'inertie de la lame 4 en ${\cal G}_4$ exprimé dans ${\cal B}_4$:

$$\tilde{\mathcal{I}}_{G_4, \text{lame}} = \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{pmatrix}_{(\vec{x}_4, \vec{y}_4, \vec{z}_4)} \text{avec } I_{zz} = 3.2 \, \text{kg.m}^2$$

Masse de la lame 4 : $M_4 = 47 \text{ kg}$

Figure 7 Détermination des paramètres de masse et d'inertie de la lame 4 à l'aide d'un modeleur volumique

Q 14. Exprimer la projection du moment cinétique en G_4 du solide 4 dans son mouvement par rapport à 2 sur $\vec{z}_0 = \vec{z}_2$, notée $\vec{\sigma}_{G_4,4/2} \cdot \vec{z}_2$, puis exprimer l'énergie cinétique du solide 4 dans son mouvement par rapport à 2, notée $T_{4/2}$, en fonction de I_{zz} , $\dot{\theta}_{40}$, M_4 et $V_G = \|\vec{V}_{G_4,4/2}\|$.

Q 15. Exprimer le vecteur vitesse du point G_4 fixe dans 4 dans son mouvement par rapport à 2, noté $\vec{V}_{G_4,4/2}$, sous sa forme la plus simple.

Il est possible d'exprimer V_G^2 sous la forme :

$$V_G^2 \sim l_1^2 \dot{\theta}_{10}^2 + (x_{G4}^2 + y_{G4}^2) \dot{\theta}_{40}^2 + 2 l_1 \dot{\theta}_{10} \dot{\theta}_{40} \, L(\theta_{10}, \theta_{40})$$

avec

$$L(\theta_{10}, \theta_{40}) = -\sin\theta_{10}(y_{G4} + x_{G4}\theta_{40}) + \cos\theta_{10}(-x_{G4} + y_{G4}\theta_{40})$$

en remarquant que, lors du mouvement, $\cos(\theta_{40}) \sim 1$ et $\sin(\theta_{40}) \sim \theta_{40}$.

Le programme de la figure 6 a permis d'obtenir l'évolution de θ_{40} en fonction de θ_{10} sous la forme de deux tableaux theta40 et theta10.

Q 16. En complément du programme de la figure 6, écrire une fonction Python ktheta qui prend en paramètre les tableaux theta40 et theta10 et renvoie un tableau image de la fonction $k_{\theta}(\theta_{40})$ telle que $\dot{\theta}_{10} = k_{\theta}(\theta_{40})\dot{\theta}_{40}$.

Finalement, comme il est possible de calculer $L(\theta_{10}, \theta_{40})$ pour chaque valeur de θ_{40} , la relation suivante sera gardée pour la suite de l'étude

$$V_G^2 = \|\vec{V}_{G_4,4/2}\|^2 = \left(d(\theta_{40})\right)^2 \dot{\theta}_{40}^2$$

où $d(\theta_{40})$ est une longueur dépendant de $\theta_{40}.$

Q 17. Exprimer l'énergie cinétique du solide 4 dans son mouvement par rapport à 2, notée $T_{4/2}$, en fonction de I_{zz} , $\dot{\theta}_{40}$, M_4 et $\left(d(\theta_{40})\right)^2$.

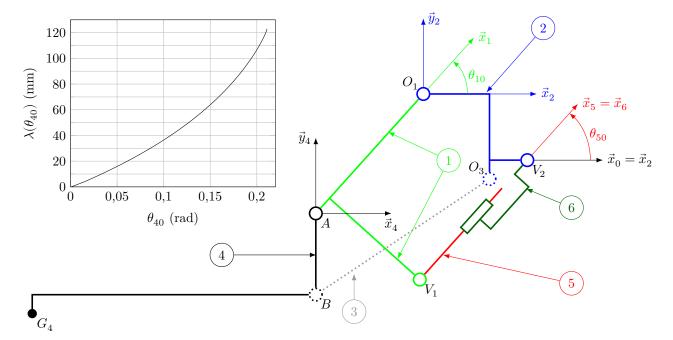
II.B.2) Implantation et choix de l'actionneur

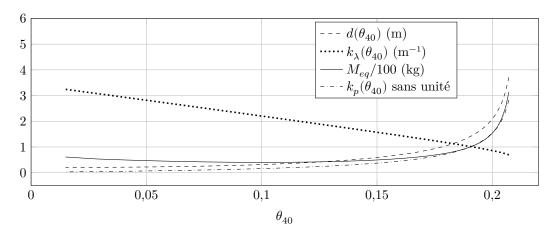
— Objectif

À partir de l'équation de mouvement du mécanisme intercep, identifier les cas extrêmes et choisir un actionneur.

On propose de motoriser l'intercep à l'aide d'un actionneur, qui est un vérin linéaire électrique implanté entre les points V_2 et V_1 définis sur la figure 8 :

- l'action mécanique motrice de 6 sur le solide 5 est modélisable par un glisseur en V_1 de résultante $-F_{\rm mot}\vec{x}_5$ avec $\vec{x}_5 = \vec{x}_6$ et $F_{\rm mot} > 0$;
- $\overrightarrow{V_1V_2} = (\lambda_0 + \lambda)\vec{x}_5$ avec $\lambda(\theta_{40} = 0 \text{ rad}) = 0 \text{ m et } \lambda_0$ une longueur constante (240 mm). L'évolution de $\lambda(\theta_{40})$ est donnée figure 8.




Figure 8 Modélisation plane de l'outil intercep avec motorisation, la barre 3 étant située dans un plan inférieur afin d'éviter les collisions

Q 18. Exprimer sous forme littérale :

- la puissance des inter-efforts entre les solides 5 et 6 notée $P_{5\leftrightarrow 6}$ en fonction de $F_{\rm mot}$ et $\dot{\lambda}$;
- la puissance de l'action mécanique du sol sur 4 dans son mouvement par rapport à 2 notée $P_{\text{sol}\to 4/2}$ en fonction de F_{sol} , $\dot{\theta}_{10}$, $\dot{\theta}_{40}$, l_1 , l_4 , θ_{41} et α_4 .

Les modèles obtenus aux questions 12, 15, 16 et 18 permettent d'établir les relations suivantes et les courbes de la figure 9:

$$\begin{split} V_G^2 &= \|\vec{V}_{G_4,4/2}\|^2 = d^2(\theta_{40})\,\dot{\theta}_{40}^2, \\ \dot{\theta}_{40} &= k_{\lambda}(\theta_{40})\,\dot{\lambda}, \\ P_{\text{sol}\to 4/2} &= -F_{\text{sol}}\,k_p(\theta_{40})\,\dot{\lambda}. \end{split}$$

 ${\bf Figure~9} \quad \hbox{\'e} volutions des paramètres obtenus à partir des modèles développés aux questions précédentes$

 $\textbf{Q 19.} \quad \text{Exprimer la masse équivalente } M_{eq} \text{ en fonction de } I_{zz}, M_4, d(\theta_{40}) \text{ et } k(\theta_{40}) \text{ telle que l'énergie cinétique de l'ensemble } \{1+4+5+6\} \text{ dans son mouvement par rapport à 2 soit égale à } \frac{1}{2} M_{eq} \dot{\lambda}^2.$

Afin de dimensionner le moteur du vérin électrique, et comme les systèmes d'équations ne sont pas linéaires, il est décidé de se placer dans le *pire des cas*, c'est-à-dire le cas où l'actionneur doit exercer l'effort le plus intense, puis de généraliser la valeur des paramètres de ce pire des cas à tous les autres cas.

2020-03-02 16:20:51 Page 12/15

Le diagramme d'état décrivant l'alternance des états de pilotage du vérin de l'intercep est donné à la figure C du document réponse. Il possède en particulier 3 états :

- l'ÉTAT 0 est l'état de déverrouillage ou d'arrêt et correspond à la mise hors énergie du vérin électrique (qui est réversible) suite à la détection d'un effort trop important (valeur de courant limite détectée) ou lorsque l'outil intercep n'est pas utilisé;
- l'ÉTAT 1 est l'asservissement de vitesse du vérin électrique lors des *phases de retrait* et de travail qui permet de reculer la lame de l'intercep en fonction de la vitesse de déplacement de la barre palpeuse (figure 10);
- l'ÉTAT 2 est le *déploiement* de la lame et permet de revenir à la position d'origine (intercep complètement déployé),

Les évènements utilisés sont les suivants :

- « vitesse négative » indique que la vitesse de la barre palpeuse devient négative (signifie qu'elle n'est plus en contact avec le cep) ;
- « !vitesse négative » est le complémentaire de « vitesse négative » ;
- « butée » indique que le détecteur inductif, placé directement sur l'axe du vérin électrique, passe à l'état haut et signale la position entièrement déployée de l'intercep;
- « ON », mise en route de l'intercep;
- « OFF », arrêt de l'intercep;
- « effort déverrouillage » indique que l'effort de déverrouillage est atteint, la détection est effectuée grâce à la mesure des courants de la machine électrique.

Dans le pire des cas, la consigne de vitesse élaborée à partir de la barre palpeuse revient à piloter le vérin avec une accélération constante ($\ddot{\lambda}=12\,\mathrm{m\cdot s^{-2}}$) pendant 0,1 s, puis une décélération constante ($\ddot{\lambda}=-12\,\mathrm{m\cdot s^{-2}}$) pendant 0,1 s. Pour le deploiement, le pilotage est effectué en boucle ouverte (BO) de vitesse et dans ce cas $\ddot{\lambda}\sim-10\,\mathrm{m\cdot s^{-2}}$.

Q 20. En indiquant le système isolé et le théorème utilisé, exprimer littéralement $F_{\rm mot}$ en fonction de $\ddot{\lambda}, M_{eq}$, $F_{\rm sol}$ et $k_p(\theta_{40})$. Effectuer l'application numérique dans le pire des cas pour l'actionneur ($F_{\rm sol} = F_{d\,{\rm MAX}} = 5\,{\rm kN}$), indiquer la position choisie pour la valeur de θ_{40} (figure 9) et l'état (1 ou 2 de la figure C) le plus critique.

Il est proposé d'utiliser un des vérins électriques dont les caractéristiques sont données sur le tableau 2.

Référence	Effort maximal	Vitesse maximale	Course
Vérin 1	$500 \; \mathrm{kN}$	$100 \mathrm{mm}\cdot\mathrm{s}^{-1}$	$\mathrm{de}~0~\grave{\mathrm{a}}~400~\mathrm{mm}$
Vérin 2	$200 \; \mathrm{kN}$	$600 \mathrm{mm \cdot s^{-1}}$	$\mathrm{de}~0~\grave{\mathrm{a}}~400~\mathrm{mm}$
Vérin 3	100 kN	$1100 \; \mathrm{mm \cdot s^{-1}}$	de 0 à 400 mm
Vérin 4	$50 \mathrm{kN}$	$1400 \; \mathrm{mm \cdot s^{-1}}$	de 0 à 400 mm

Tableau 2 Caractéristiques de vérins électriques « hautes performances »

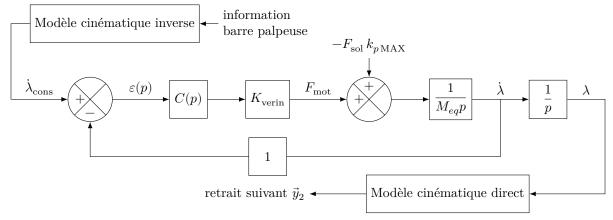
Q 21. Conclure sur le choix de l'actionneur en proposant une des références du tableau 2.

II.C - Commande de l'actionneur

— Objectif -

Valider le pilotage séquentiel de l'actionneur et choisir un correcteur pour la boucle de vitesse vis-à-vis des exigences du désherbage mécanique.

Q 22. À partir du diagramme d'état de la figure C, compléter les chronogrammes de la figure D du document réponse. Justifier la pertinence de la prise en compte des deux évènements « after $(0,25\,\mathrm{s})$ » et « after $(0,1\,\mathrm{s})$ » vis-à-vis de l'exigence 1.2 sur la protection des ceps en indiquant les problèmes qu'ils pallient. Justifier également que le choix d'une chaine de transmission réversible permet d'assurer le déverrouillage de l'outil.


L'actionneur étant choisi, le modèle linéaire de la figure 10 est établi. Ce modèle utilise les valeurs des paramètres dans le pire des cas, C(p) est la fonction de transfert du correcteur et le vérin électrique est modélisé par un gain pur $K_{\rm verin}$.

L'exigence 1.1.1 sur le recouvrement des outils peut être satisfaite par un simple réglage lors du montage des outils interceps sur Bakus.

Si l'asservissement de vitesse du mouvement de retrait est stable, rapide et précis c'est-à-dire si, pour le modèle de la figure 10,

- l'erreur de trainage vis-à-vis d'une consigne en rampe de vitesse est nulle,
- l'asservissement de vitesse n'est pas sensible à l'effort perturbateur $F_{\rm sol}\,k_{p\,{
 m MAX}}$ considéré comme constant ou très lentement variable à l'échelle de temps du mouvement de retrait,
- et la bande passante de la boucle ouverte de l'asservissement est réglable,

Figure 10 Modélisation linéaire dans le pire des cas de l'asservissement de l'outil de désherbage en suivi de la consigne élaborée par la barre palpeuse

alors un simple réglage manuel de la position de la barre palpeuse permet de satisfaire l'exigence 1.2.2 sur l'évitement des ceps.

Q 23. Proposer, en justifiant la réponse, la forme du correcteur à choisir parmi

$$K_p, \qquad \frac{1}{T_i p}, \qquad K_i \frac{1 + T_i p}{T_i p} \quad \text{ et } \quad K_d \frac{1 + T_d p}{1 + \alpha T_d p}$$

afin qu'un simple réglage manuel de la position de la barre palpeuse permette de satisfaire l'exigence 1.2.2 (il n'est pas demandé de régler les paramètres du correcteur choisi).

La dynamique de l'outil déterminée dans cette partie permet de travailler à $5 \text{ km} \cdot \text{h}^{-1}$ et valide donc l'exigence 1.1.2.

III Synthèse

Une simulation numérique a été effectuée afin d'analyser la capacité des lois de génération de consigne d'orientation des roues à assurer les performances données par le constructeur. Le modèle retenu est constitué :

- des modèles de comportement en déplacement latéral du train avant y_F et arrière y_R du robot, dont les valeurs des paramètres K_{dF} , K_{pF} et K_{dR} sont celles utilisées au I.D.3 ($K_{dF}=5$, $K_{pF}=6,25$, $K_{dR}=1$, les unités ne sont volontairement pas précisées);
- du modèle géométrique permettant de relier les variables (y_{G_2}, θ) et (y_F, y_R) (relations (E1) et (E2));
- du modèle cinématique étendu constitué des trois équations (I.1), (I.2) et (I.3);
- des générateurs de consignes angulaires pour les roues avant et arrière qui déterminent les valeurs de consigne angulaire d'orientation des roues δ_F^* et δ_R^* . Les relations de calcul utilisées sont celles qui ont été établies au I.D.3;
- de deux modèles globaux identiques de l'asservissement angulaire des roues médianes avant et arrière, dont les entrées de consigne sont respectivement δ_F^* et δ_R^* , et les sorties sont respectivement δ_F et δ_R , comparables à celui d'un modèle du premier ordre de gain statique unitaire et de constante de temps d'environ 0,2 s. Ces modèles n'ont pas fait l'objet d'une étude spécifique dans ce sujet et sont donnés ;
- la simulation a été réalisée pour une trajectoire \mathcal{T} , à suivre par le robot, confondue avec l'axe des abscisses.

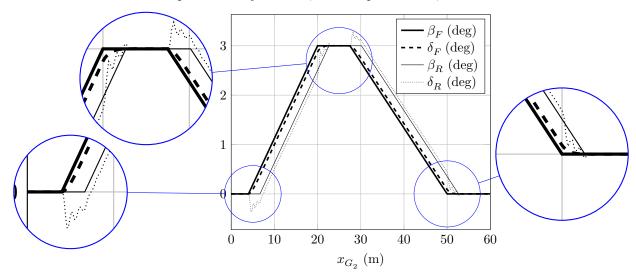
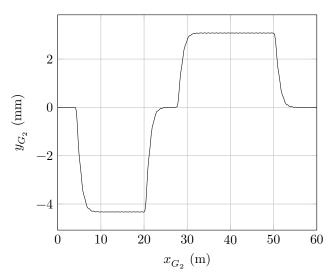



Figure 11 Évolutions de β_F , δ_F , β_R et δ_R

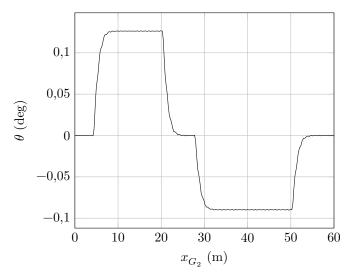


Figure 12 Évolutions de y_{G_2} et de θ

Q 24. À partir des courbes de la figure 11, issues de la simulation numérique effectuée :

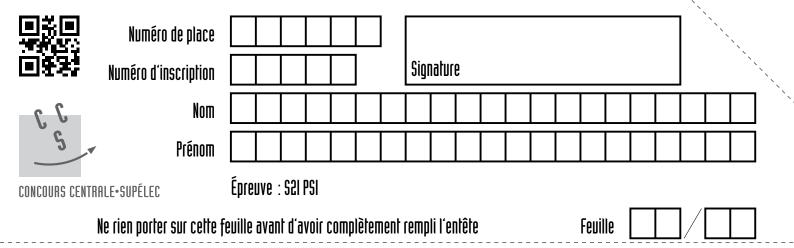
- expliquer ce qui se passe physiquement au niveau du contact roues-sol au cours du temps ;
- analyser l'allure et l'amplitude des évolutions de δ_F et δ_R . Justifier si ce résultat est conforme à celui qui est attendu de la part du robot.

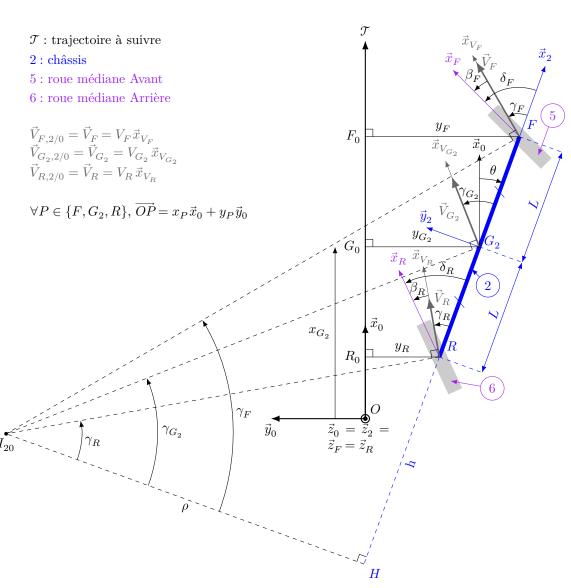
Q 25. À partir des courbes issues de la simulation numérique effectuée (figures 11 et 12):

- vérifier si les hypothèses émises (relatives à la valeur des différents angles, ainsi qu'à leur variation le long de la trajectoire à suivre), afin de déterminer des lois simples pour obtenir les valeurs d'angle de consigne d'orientation des roues avant et arrière δ_F^* et δ_R^* , sont validées. Justifier quantitativement la réponse ;
- conclure quant à la validité des lois de génération de consigne d'orientation des roues proposées et des valeurs des paramètres K_{dF} , K_{pF} et K_{dR} retenues, vis-à-vis du cahier des charges en terme de précision de guidage du robot enjambeur ;
- conclure quant à l'aptitude du robot Bakus à pouvoir désherber mécaniquement sous un rang de vigne à l'aide d'un outil intercep, en tenant compte de l'exigence de guidage.

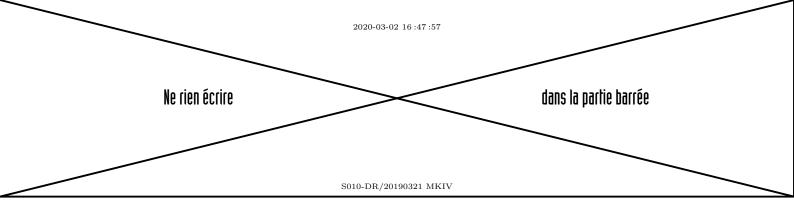
Opérations et fonctions Python disponibles

Après avoir importé la bibliothèque numpy à l'aide de l'instruction


import numpy as np


les opérations suivantes sont disponibles,

- u[i:j] où u est un vecteur et i et j deux entiers : extrait la tranche (u[i], u[i+1], ..., u[j-1]) ; u[i:j] ne construit pas un nouveau vecteur mais référence le vecteur u ;
- a + b, a b, a * b, a / b renvoient un nouveau tableau correspondant respectivement à la somme, à la différence, au produit et au quotient terme à terme des deux tableaux a et b;
- np.arange(d, f, s) où d, f et s sont trois nombres : construit le vecteur (d, d+s, d+2s, ..., d+ns) tel que $d+ns < f \le d+(n+1)s$;
- np.arccos(u) calcule l'arc cosinus (dans l'intervalle $[0,\pi]$) terme à terme du tableau u, le résultat est un nouveau tableau de même dimension que u;
- np.radians(u) crée un nouveau tableau en multipliant chaque élément du tableau u par $\pi/180$, autrement dit convertit u de degrés en radians;
- np.sqrt(u) calcule la racine carrée terme à terme du tableau u.


• • • FIN • • •

2020-03-02 16:20:51 Page 15/15

Figure A Vue de dessus d'un modèle cinématique étendu de type « bicyclette » dans le cas d'une trajectoire rectiligne $\mathcal T$ à suivre par le robot (configuration pour laquelle $\theta < 0$ et $y_F, y_{G_2}, y_R < 0$). Les roues médianes 5 et 6 peuvent être orientées en pivotant respectivement autour de $(F, \vec{z}_F) = (F, \vec{z}_2)$ et $(R, \vec{z}_R) = (R, \vec{z}_2)$.

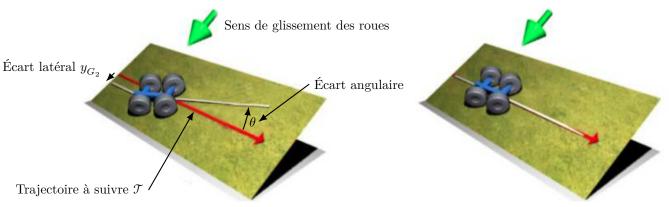


Figure B Problématique de la marche en crabe due au glissement du robot sur un sol naturel en pente (à gauche) et situation où le couple de variables (y_{G_2}, θ) est bien asservi au point de fonctionnement (0,0) (à droite)

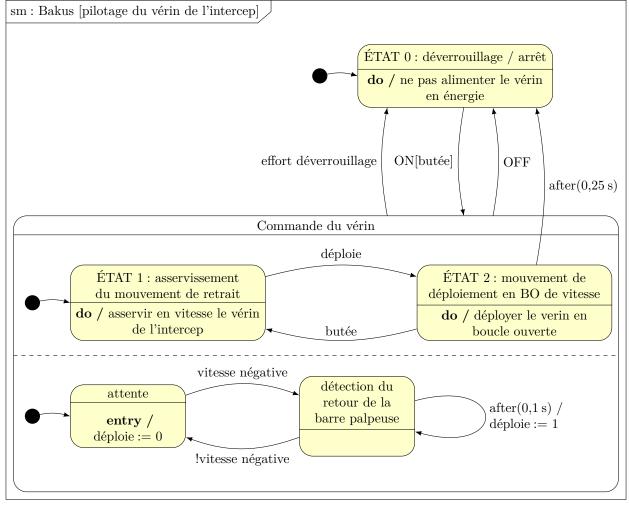


Figure C Diagramme d'état décrivant l'alternance des états de pilotage du vérin électrique de l'intercep

Question 22

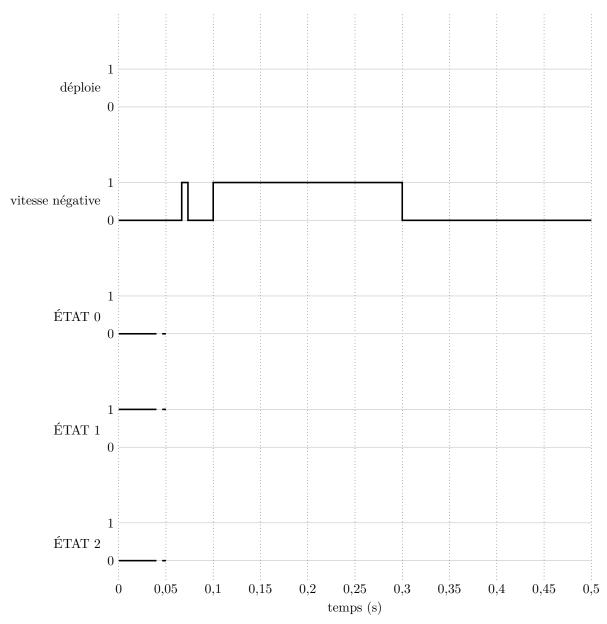
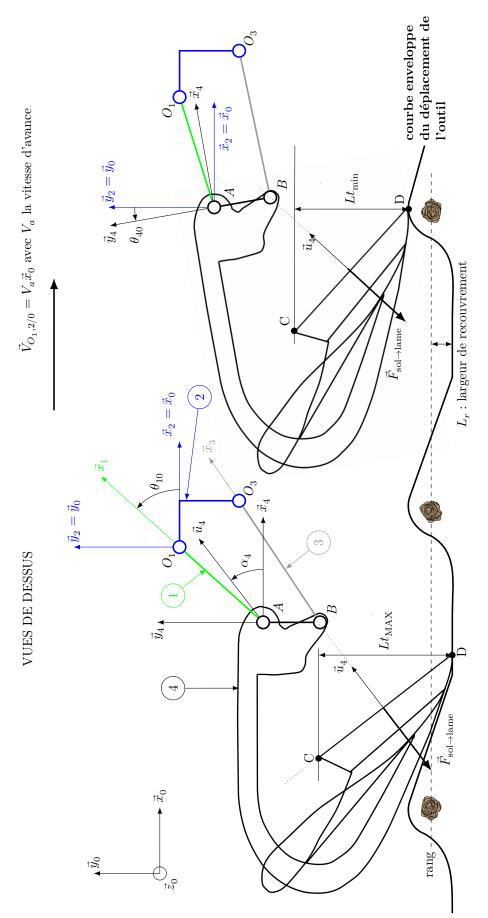



Figure D

Figure E Modélisation de l'outil intercep et de sa lame en position déployée (à gauche) et en position de retrait (à droite) en vue de dessus (barre palpeuse non représentée).

S2I

Présentation du sujet

Cette épreuve a pour objet la robotisation du désherbage mécanique des vignes dans le contexte du développement durable par des véhicules exclusivement électriques, pour minimiser les émissions de gaz à effet de serre, et capables de suivre le rang de vigne de manière autonome. L'étude proposée s'appuie sur l'un de ceux qui sont aujourd'hui commercialisés, le robot autonome Bakus dont la conception et la réalisation font appel à l'ingénierie des systèmes multi-physiques complexes. Il s'agit d'un quadriporteur, enjambeur de rang, dont chaque roue est motrice et orientable et dont l'autonomie de l'énergie électrique est assurée par des batteries et des panneaux solaires.

Dans ce sujet, l'étude est limitée au désherbage mécanique avec lame décavaillonneuse car il est le plus exigeant vis-à-vis des performances attendues du robot. Ce décavaillonnage, qui consiste à retourner la terre dans la zone « sous le rang » demande un guidage très précis des outils et une dépense énergétique accrue pour vaincre l'effort du sol sur les lames et assurer le mouvement de retrait de ces dernières à l'approche d'un cep qu'il ne faut pas blesser.

La problématique retenue pour ce sujet est la validation des solutions retenues pour suivre le rang de manière autonome et assurer le retrait des lames décavaillonneuses à l'aide d'un actionneur électrique tout en optimisant la consommation énergétique et en respectant les exigences du désherbage mécanique. Le sujet est décomposé en deux parties.

La première partie a pour finalité l'élaboration de la consigne de guidage du robot Bakus le long du rang à partir des informations issues des capteurs installés et la vérification des performances du guidage vis-à-vis du désherbage mécanique dans le cas de sols glissants en dévers. Les candidats sont invités successivement à élaborer les lois permettant de générer les consignes d'orientation à envoyer à chacune des quatre roues orientables du robot, afin qu'il puisse se déplacer le long d'un rang de vigne avec la même précision qu'un tracteur piloté par un chauffeur, puis à établir un modèle exploitable décrivant les déplacements du robot Bakus sur un sol naturel, c'est-à-dire en tenant compte d'un éventuel glissement des roues sur le sol lorsqu'il est en dévers (phénomène de dérive latérale et angulaire). Puis, pour justifier le choix du modèle de comportement en déplacement latéral du robot assurant sa convergence à une valeur de consigne, les candidats doivent s'assurer de l'indépendance du modèle cinématique étendu de la vitesse linéaire du robot le long d'un rang de vigne, et du découplage de la gestion des écarts latéraux à celui de la vitesse d'avance. Cette partie se conclut par l'établissement des deux relations qui permettant de déterminer la consigne d'orientation des roues avant et arrière.

La deuxième partie du sujet est consacrée à l'estimation de la puissance économisée lors de l'évitement d'un cep par une étude du mécanisme de retrait d'une lame décavaillonneuse, puis au choix d'un actionneur électrique par une étude dynamique pour in fine concevoir une stratégie de commande de ce dernier. Les candidats sont invités successivement à adapter un outil intercep non motorisé utilisé avec les tracteurs traditionnels pour ensuite concevoir un outil avec motorisation électrique pour le robot Bakus. Ils doivent alors choisir un mécanisme de transformation du mouvement qui permette de diminuer d'au moins 15 % la puissance de cette action mécanique lorsque l'outil est en position moyenne de retrait par rapport à sa position déployée. Ils doivent enfin ajouter, dimensionner et commander un actionneur électrique permettant d'assurer le mouvement de retrait et le déploiement de la lame. Cette partie se termine par la validation du pilotage séquentiel de l'actionneur et le choix d'un correcteur pour la boucle de vitesse.

Deux questions de synthèse terminent ce sujet. Elles permettent de conclure à propos de l'aptitude du robot Bakus à être capable de désherber mécaniquement sous un rang de vigne à l'aide d'un outil intercep, en respectant les exigences de guidage.

Analyse globale des résultats

Les prestations des candidats suscitent cette année, de la part du jury, les mêmes remarques générales que celles des années précédentes. Manifestement les rapports, rédigés ces dernières années, pour les candidats et leurs professeurs, n'ont pas eu l'impact attendu sur la préparation en CPGE. Malgré ce constat, le jury reprend les remarques antérieures.

D'une façon récurrente :

- les meilleures notes sont attribuées aux candidats qui montrent de réelles capacités à analyser, modéliser, calculer, critiquer et à communiquer par écrit;
- les réponses données sans aucune justification, ne sont pas prises en compte par les correcteurs. Les pages de « verbiage écrit » doivent être remplacées par des explications claires et concises ;
- les résultats numériques sans unité sont lourdement pénalisés. Le jury conseille aux candidats de prendre le temps de vérifier l'homogénéité des résultats, de faire les applications numériques lorsqu'elles sont demandées et d'en faire une analyse critique (ordre de grandeur, nombre de chiffres significatifs);
- les réponses aux questions confirment la dérive du manque de rigueur dans les raisonnements et dans l'application des théorèmes. Le jury sanctionne bien sûr les fautes dans les formules littérales, mais aussi les manquements ou insuffisances, et les imprécisions;
- les questions de dynamique mettent en évidence les lacunes de connaissances et de méthodes dans ce domaine. Les candidats ne respectent pas les notations usuelles (absence du repère de dérivation en cinématique, mouvements relatifs non précisés...) et aboutissent régulièrement à des résultats faux ou non homogènes.

Commentaires sur les réponses apportées et conseils aux futurs candidats

De manière générale

Le jury regrette de trouver des copies dont la qualité de présentation n'est pas du niveau attendu pour ce concours. De plus en plus de réponses sont illisibles. Les lettres ne sont pas identifiables en étant mal ou pas du tout formées. Les signes dans les formules ne sont pas reconnaissables. Le jury, cette année encore, a fait beaucoup d'efforts pour déchiffrer les copies. Dans le doute, ces candidats sont sanctionnés par les correcteurs.

Le jury recommande aux candidats d'indiquer le numéro des questions correspondant aux réponses qu'ils développent et de mettre en relief les résultats.

Le jury souligne le nombre d'erreurs de signe anormalement élevé.

Le jury conseille enfin aux candidats de s'approprier le problème posé avant de se lancer dans les calculs de sa résolution et de respecter la chronologie des questions.

I Génération des consignes d'orientation des roues avant et arrière pour le guidage du robot

Q1, Q2. Une manipulation simple d'angles coplanaires suffisait pour trouver les expressions demandées sans faire de longs développements calculatoires. Ces développements sont trop souvent dus à des problèmes de projection de vecteurs sans identifier la somme algébrique des angles sur la figure. Beaucoup d'erreurs sont liées à l'orientation négative de l'angle sur le schéma de la figure A.

Q3. La relation finale est trouvée par une majorité de candidats. La démonstration est, par contre, très souvent mal rédigée ou inexistante.

- **Q5**. Parmi les quelques candidats qui évoquent la différence entre codeurs incrémentaux et absolus par la nécessité d'une prise d'origine, trop peu présentent les inconvénients, dans l'application considérée, de la nécessaire prise d'origine. En revanche, de nombreux candidats affirment une meilleure précision pour les codeurs absolus ou que seule la valeur absolue des angles était nécessaire.
- Q7. Les démonstrations sont souvent très approximatives, notamment par l'intégration hasardeuse par rapport au temps avant la dérivée partielle par rapport à l'espace.
- Q8. Cette question est assez bien traitée. Cependant, les paramètres du second ordre ne sont pas toujours explicités et la tangente à l'origine n'est pas toujours nulle dans la représentation. Enfin, l'intérêt du facteur d'amortissement pour le système le plus rapide sans dépassement n'est pas toujours évoqué par rapport à l'application étudiée. Beaucoup de candidats cherchent à résoudre l'équation différentielle. Ce n'était pas demandé. Enfin, le jury constate que trop peu de candidats sont capables de passer de l'expression temporelle de l'équation différentielle à sa mise sous forme canonique en faisant apparaître ses caractéristiques : coefficient d'amortissement, gain et pulsation propre.
- $\mathbf{Q9}$. Cette question a produit beaucoup trop de réponses « automatiques ». Des candidats parlent de $95\,\%$ ou de $5\,\%$ sans préciser de quoi il s'agit ou en évoquant $5\,\%$ d'une valeur nulle. De plus, l'application numérique a été rarement réalisée car peu de candidats connaissent la valeur du temps de réponse réduit pour un coefficient d'amortissement égal à 1.
- Q10. Dans beaucoup de copies les calculs ne sont pas terminés alors qu'ils étainet bien commencés. Les candidats donnent l'impression de ne pas vouloir poursuivre les développements.

II Optimisation énergétique du mouvement de retrait d'une lame décavaillonneuse, choix d'un actionneur et conception de sa commande

- Q11. Le bouclage géométrique est bien réalisé dans la plupart des copies.
- Q12. Presque tous les candidats pensent à élever au carré mais beaucoup font des erreurs de calcul.
- **Q13**. De façon étonnante, un nombre important de candidats obtient la bonne expression pour l'évaluation de l'écart en puissance, mais se trompe dans l'application numérique, voire ne la fait pas alors qu'il n'y a plus qu'à saisir le rapport de cosinus dans une calculatrice
- Q14. Le calcul de la projection du moment cinétique ne pose pas de gros soucis, sauf aux candidats qui ne connaissent pas bien l'expression du moment cinétique au centre de gravité et qui se lancent dans de longs calculs. L'expression de l'énergie cinétique est quant à elle bien traitée car la forme est assez classique. Il y a cependant encore des oublis du carré dans l'expression.
- Q15. Beaucoup de candidats n'ont pas bien appréhendé les mouvements et obtiennent donc une expression incomplète de la vitesse demandée. De plus, la majorité n'a pas su obtenir une expression simple alors que le modèle du mécanisme met seulement en jeu des liaisons pivot dans un mouvement plan. Le jury regrette que de nombreux candidats projettent systématiquement les expressions vectorielles.
- Q16. L'algorithme de dérivation en Python n'a été que rarement proposé par les candidats; mais la plupart de ceux-ci l'ont bien traité.
- Q17. La majorité des fautes semble être des fautes d'étourderie.
- Q18. Certains candidats éprouvent des difficultés dans la définition d'une puissance des interefforts. Des résultats sont corrects plus par sens physique que par détermination rigoureuse. La manipulation des formules de trigonométrie n'est pas encore naturelle pour de nombreux candidats.
- **Q20**. La qualité des réponses est variable. Peu de candidats mènent correctement une démarche rigoureuse d'application du TEC et le cas le plus critique n'est pas bien analysé.

- **Q21**. Trop peu de candidats analysent la rapidité nécessaire du vérin. Certains confondent la rapidité du vérin avec la vitesse maximale du robot de $5 \text{ km} \cdot \text{h}^{-1}$.
- **Q22**. Le jury est surpris que l'analyse du graphe d'états ne soit que rarement effectuée et, dans les cas où elle est abordée, ne soit pas correctement réalisée alors que la compréhension du graphe fourni était très abordable. L'échelle des temps n'est que rarement respectée.
- Q23. Cette question, qui permettait de tester les compétences de conception de la commande d'un système asservi est mal réussie. La FTBO n'a pas été correctement analysée et appréciée de classe 2 par certains candidats ; en effet la chaine directe comporte deux intégrateurs dont le dernier est extérieur à la FTBO. Cela n'a pas été compris. Extrêmement peu de candidats pensent à exclure le correcteur intégral en analysant l'instabilité consécutive à la présence du double intégrateur dans la Boucle Ouverte.

III Synthèse

- **Q24**. La plupart des candidats se contente d'écrire une demi-page pour décrire l'évolution des courbes, et il est souvent difficile d'en extraire l'information ou le morceau de phrase qui correspond à la réponse attendue. Certaines copies révèlent à cet endroit, que les candidats, à l'aise dans des développements mathématiques, n'ont, en fait, pas réfléchi au système étudié.
- Q25. Trop de candidats se contentent de réponses vagues et incomplètes. Pour ces questions de lecture de document, les candidats doivent rédiger de manière claire en incluant, d'une part, la mesure lue sur le graphe obtenu par simulation, et d'autre part l'exigence du cahier des charges auquel elle est associée. La mise en évidence des écarts est un des points structurant de la discipline des sciences industrielles de l'ingénieur.

Conclusion

Les sujets de sciences industrielles pour l'ingénieur sont construits autour d'une problématique industrielle. Découpés en plusieurs parties, ils proposent une progressivité dans la démarche de compréhension du système, d'analyse et de modélisation. Ainsi, les candidats qui papillonnent, en ne traitant pas les problèmes dans l'ordre, éprouvent davantage de difficultés à répondre aux questions. Le jury rappelle tout le bénéfice que les candidats peuvent tirer de la lecture complète du sujet avant de commencer proprement la rédaction.

La validation de l'étude en sciences industrielles pour l'ingénieur est conduite par l'analyse de l'écart entre les performances attendues, données dans le cahier des charges et les performances simulées, calculées au fil des questions. Le jury conseille donc de lire attentivement le cahier des charges pour identifier ces écarts en s'appuyant sur le critère ou le niveau d'exigence demandé. Il attend qu'ensuite les candidats se prononcent sur la pertinence de la solution, analysent ces écarts, en identifient les causes et imaginent des remèdes. Le jury ne peut se satisfaire de réponses superficielles.

Comme chaque année, le jury se réjouit de trouver d'excellentes copies qui sont manifestement le fruit d'un travail soutenu et de compétences affirmées. Par la qualité de leur prestation, ces candidats valident la longueur et l'adéquation de l'épreuve au public visé. Par leur exemple, ils encouragent les futurs candidats et leurs formateurs à persévérer dans la voie de l'excellence de la préparation.

Ces excellentes copies montrent également que, malgré le contexte particulier d'une épreuve de concours, il est possible de rédiger les réponses avec un graphisme clairement lisible et une présentation soignée. Cette capacité n'est pas partagée par tous. Aussi, le jury invite les professeurs de CPGE à exiger un niveau de qualité dans les copies que les étudiants leur remettent au cours des deux années de préparation.